// GenerativeAI FRAMEWORK ALGORITHM PATTERN //

## MAIN ORCHESTRATION ALGORITHM
async def process_healthcare_revenue_cycle(patient_encounter): # Master orchestration algorithm for entire GenerativeAI Framework pipeline ┌─────────────────────────────────────┐ [ML] ORCHESTRATOR.initialize() └─────────────────┬───────────────────┘ # PHASE 1: PRE-VISIT PROCESSING pre_visit_tasks = [ await SchedulingAgent.optimize_appointment(patient_encounter), await NoShowPredictor.calculate_risk_score(patient_encounter), await PriorAuthAgent.check_authorization(patient_encounter) ] if pre_visit_tasks[1].risk_score > 0.7: await InterventionSystem.execute_prevention_protocol()
## AGENT FUNCTION DEFINITIONS
class SchedulingAgent: @optimization_algorithm def optimize_appointment(self, patient): ┌─────────────────────────────┐ INPUT: patient_preferences └────────────┬────────────────┘ ┌────────────▼────────────────┐ PROCESS: ML optimization - Resource allocation - Wait time minimization - Provider matching └────────────┬────────────────┘ ┌────────────▼────────────────┐ OUTPUT: optimal_slot └─────────────────────────────┘ constraints = { 'provider_availability': self.get_provider_slots(), 'patient_preferences': patient.preferences, 'resource_capacity': self.check_resources() } return OptimizationEngine.solve(constraints)
class MedicalCodingAgent: @transformer_algorithm def auto_code_encounter(self, clinical_notes): # BERT-based NLP pipeline for medical coding ┌──────────────────────────────────┐ [BERT] Clinical Text Analysis ├──────────────┬───────────────────┤ Diagnoses Procedures └──────┬───────┴────────┬──────────┘ ┌──────▼───────┐ ┌──────▼───────┐ ICD-10 Map CPT Map └──────┬───────┘ └──────┬───────┘ ┌──────▼────────────────▼───────┐ Validated Code Output └───────────────────────────────┘ embeddings = self.bert_model.encode(clinical_notes) entities = self.ner_model.extract_medical_entities(embeddings) return { 'icd10': self.map_to_icd10(entities.diagnoses), 'cpt': self.map_to_cpt(entities.procedures), 'confidence': entities.confidence_scores }
## PARALLEL PROCESSING PATTERN
async def execute_visit_phase(encounter): # Parallel execution of visit-phase agents ┌─────────────────┐ Visit Encounter └────────┬────────┘ ┌────────────┼────────────┬────────────┐ ▼ ▼ ▼ ▼ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ Patient Insurance Medical Charge Reg Verify Coding Capture └─────────┘ └─────────┘ └─────────┘ └─────────┘ tasks = await asyncio.gather( PatientRegAgent.validate(encounter), InsuranceAgent.verify(encounter), CodingAgent.auto_code(encounter), ChargeAgent.capture(encounter) ) return VisitResults.compile(tasks)
## MACHINE LEARNING PIPELINE
class DenialManagementAgent: @reinforcement_learning def process_denial(self, denial): # Q-Learning based denial management ┌────────────────────────────────────┐ DENIAL RECEIVED └─────────────┬──────────────────────┘ ┌─────────────▼──────────────────────┐ [ML] Classify Denial Reason • Medical necessity • Authorization • Coding error • Timely filing └─────────────┬──────────────────────┘ ┌─────────────▼──────────────────────┐ [RL] Select Optimal Action Based on historical success └─────────────┬──────────────────────┘ ┌─────────────▼──────────────────────┐ Generate & Submit Appeal └────────────────────────────────────┘ state = self.extract_state_features(denial) action = self.q_network.predict_best_action(state) appeal = self.appeal_generator.create(action) # Update Q-values based on outcome self.q_network.update(state, action, reward) return appeal
## ERROR HANDLING & FALLBACK PATTERN
def intelligent_error_handler(agent_name, error): ┌──────────────────────┐ ERROR DETECTED └──────────┬───────────┘ ┌──────────▼───────────┐ Classify Error Type └──────────┬───────────┘ ┌──────────▼───────────────────────┐ if recoverable: → Retry with backoff elif partial_failure: → Continue with degraded mode else: → Escalate to human review └──────────────────────────────────┘ try: return fallback_strategies[agent_name](error) except: return HumanReviewQueue.add(error)
## PERFORMANCE MONITORING
METRICS = { 'throughput': 'claims/hour', 'accuracy': 'error_rate < 0.01', 'latency': 'p99 < 100ms', 'cost_savings': 'automation_rate > 95%' }