async def process_healthcare_revenue_cycle(patient_encounter):
    
    
    ┌─────────────────────────────────────┐
    │ [ML] ORCHESTRATOR.initialize()     │
    └─────────────────┬───────────────────┘
                      │
                      ▼
    
    
    pre_visit_tasks = [
        await SchedulingAgent.optimize_appointment(patient_encounter),
        await NoShowPredictor.calculate_risk_score(patient_encounter),
        await PriorAuthAgent.check_authorization(patient_encounter)
    ]
    
    if pre_visit_tasks[1].risk_score > 0.7:
        await InterventionSystem.execute_prevention_protocol()
class SchedulingAgent:
    @optimization_algorithm
    def optimize_appointment(self, patient):
        ┌─────────────────────────────┐
        │ INPUT: patient_preferences  │
        └────────────┬────────────────┘
                     │
        ┌────────────▼────────────────┐
        │ PROCESS: ML optimization    │
        │ - Resource allocation       │
        │ - Wait time minimization    │
        │ - Provider matching         │
        └────────────┬────────────────┘
                     │
        ┌────────────▼────────────────┐
        │ OUTPUT: optimal_slot        │
        └─────────────────────────────┘
        
        constraints = {
            'provider_availability': self.get_provider_slots(),
            'patient_preferences': patient.preferences,
            'resource_capacity': self.check_resources()
        }
        
        return OptimizationEngine.solve(constraints)
class MedicalCodingAgent:
    @transformer_algorithm
    def auto_code_encounter(self, clinical_notes):
        
        
        ┌──────────────────────────────────┐
        │ [BERT] Clinical Text Analysis  │
        ├──────────────┬───────────────────┤
        │   Diagnoses  │    Procedures     │
        └──────┬───────┴────────┬──────────┘
               │                │
        ┌──────▼───────┐ ┌──────▼───────┐
        │ ICD-10 Map   │ │ CPT Map      │
        └──────┬───────┘ └──────┬───────┘
               │                │
        ┌──────▼────────────────▼───────┐
        │    Validated Code Output      │
        └───────────────────────────────┘
        
        embeddings = self.bert_model.encode(clinical_notes)
        entities = self.ner_model.extract_medical_entities(embeddings)
        
        return {
            'icd10': self.map_to_icd10(entities.diagnoses),
            'cpt': self.map_to_cpt(entities.procedures),
            'confidence': entities.confidence_scores
        }
async def execute_visit_phase(encounter):
    
    
              ┌─────────────────┐
              │ Visit Encounter │
              └────────┬────────┘
                       │
          ┌────────────┼────────────┬────────────┐
          ▼            ▼            ▼            ▼
    ┌─────────┐  ┌─────────┐  ┌─────────┐  ┌─────────┐
    │Patient  │  │Insurance│  │Medical  │  │Charge   │
    │Reg      │  │Verify   │  │Coding   │  │Capture  │
    └─────────┘  └─────────┘  └─────────┘  └─────────┘
    
    tasks = await asyncio.gather(
        PatientRegAgent.validate(encounter),
        InsuranceAgent.verify(encounter),
        CodingAgent.auto_code(encounter),
        ChargeAgent.capture(encounter)
    )
    
    return VisitResults.compile(tasks)
class DenialManagementAgent:
    @reinforcement_learning
    def process_denial(self, denial):
        
        
        ┌────────────────────────────────────┐
        │        DENIAL RECEIVED             │
        └─────────────┬──────────────────────┘
                      │
        ┌─────────────▼──────────────────────┐
        │ [ML] Classify Denial Reason      │
        │ • Medical necessity              │
        │ • Authorization                  │
        │ • Coding error                   │
        │ • Timely filing                  │
        └─────────────┬──────────────────────┘
                      │
        ┌─────────────▼──────────────────────┐
        │ [RL] Select Optimal Action      │
        │ Based on historical success      │
        └─────────────┬──────────────────────┘
                      │
        ┌─────────────▼──────────────────────┐
        │    Generate & Submit Appeal        │
        └────────────────────────────────────┘
        
        state = self.extract_state_features(denial)
        action = self.q_network.predict_best_action(state)
        appeal = self.appeal_generator.create(action)
        
        
        self.q_network.update(state, action, reward)
        
        return appeal
def intelligent_error_handler(agent_name, error):
    ┌──────────────────────┐
    │   ERROR DETECTED     │
    └──────────┬───────────┘
               │
    ┌──────────▼───────────┐
    │ Classify Error Type  │
    └──────────┬───────────┘
               │
    ┌──────────▼───────────────────────┐
    │ if recoverable:                │
    │   → Retry with backoff          │
    │ elif partial_failure:          │
    │   → Continue with degraded mode │
    │ else:                          │
    │   → Escalate to human review    │
    └──────────────────────────────────┘
    
    try:
        return fallback_strategies[agent_name](error)
    except:
        return HumanReviewQueue.add(error)
METRICS = {
    'throughput': 'claims/hour',
    'accuracy': 'error_rate < 0.01',
    'latency': 'p99 < 100ms',
    'cost_savings': 'automation_rate > 95%'
}